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This intellectual output was created in the Erasmus project " DREAM - 

Discover Real Everywhere Applications of Maths”, identification number:  

2016-1-RO01-KA201-024518, through the collaboration of students and 

teachers from Colegiul Național ”Constantin Diaconovici Loga” Timișoara, 

Romania, 1o Geniko Lykeio, Aigiou, Greece, Agrupamento de Escolas Soares 

Basto, Oliveira de Azeméis Norte, Portugalia and “TIBISCUS” University of 

Timișoara, Computers and Applied Computer Science Faculty. 

The project’s main objective was to build up a new Maths teaching/learning 

methodology based on real-life problems and investigations (open-ended 

Maths situations), designed by students and teachers together. The activities 

involved experiments, hands-on approach, outdoor activities and virtual and 

mobile software applications. The developed material was transformed into 

online courses and is freely available to all interested communities, in order to 

produce collaborative learning activities. 

O6 - Maths in Physics has the  purpose to facilitate the understanding of the 

usefulness of some mathematical chapters that are applicable to Physics and 

real life. 

The activities in this pack feed into the Skills and Capability Framework by 

providing contexts for the development of Thinking, Problem Solving and 

Decision Making Skills and Managing Information.  Open-ended questions 

facilitate pupils to use Mathematics.  ICT opportunities are provided through 

using Moodle platform and additional tasks researching information using the 

internet.  

This intellectual output comprises five lesson scenarios and guides the teacher 

in creating interactive and exciting lessons. 
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Introduction 
Can Mathematics provide the answers for Physics? Obviously, yes, because 

Physics uses makes use of Maths all the time. But is Mathematics enough? Can 

it give all the answers Physics demands of it? This is also arguably true, 

because no Physical truth can be thoroughly perceived outside of Mathematics. 

So Physics is an important chapter of Mathematics. The other parts of Maths 

(different from Physics) is an interesting theoretical artifice whose link with 

Physics has not yet been discovered. Therefore... this other part of Maths 

doesn’t yet have an equivalent in the real world, since if it did, it would also 

be uncaptured by a truth in Physics... 

They start from diametrically opposed places in their quest for the truth: Maths 

from the abstract and Physics- from the concrete. The relationship between 

Mathematics and Physics is, therefore, the same as that between theory and 

practice. 

Physics can be taught in such a way that the teacher becomes a revealer of 

knowledge and truth and a partner of study for the student. More precisely, the 

lesson may start with the teacher launching a provocative question to the 

students (‘cognitive conflict’). Throughout the lesson, the students would be 

encouraged to discover the answer by themselves.  Their main task would be 

to find the explanation for the physical phenomenon that was discussed.  

Teachers also have the role to activate the a-priori, naive and prescientific 

knowledge/intuition of children. This working method contributes to a better 

understanding of the studied phenomena, being used in everyday life. 

Benefits: The teaching method described above reawakens not only the 

students’ interest for natural sciences, but also their curiosity about the world 

around them. Moreover, the majority of students taught in this way would be 

able to recognize the practical relevance of what they are studying in the exact 

sciences.  

The proposed activities also contribute to important elements used in the 

current economical environment: critical thinking, creativity, initiative, 

solving unstandardized problems, and risk evaluation, decision-making. 

Memory and the use of simple, repetitive procedures have gained a secondary 
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role in a lot of jobs.  People may now change their career even 3 or 4 times 

throughout their active lives. 

The learning process has been met with new dimensions, such as the 

developing industry of e-learning. Consequently, platforms with systems 

managing the learning process have become extremely numerous, so there are 

multiple options to choose from for anyone interested. 

Moodle is one of the most popular of such platforms. It is an open-source, 

being permanently modified and improved. (Its name stands for Modular 

Object-Oriented Dynamic Learning Environment.)It can be downloaded for 

free, its licence being under GNU’s General Public License. However, in order 

to benefit from certain options, an extra tax may be paid.  

A big advantage of Moodle is its availability in a wide variety of languages. It 

allows teachers to test their students through homework and written exams. 

The main difference between it and other similar services is that, besides the 

pre-set choices or the short answers demanded; students can also upload larger 

files, such as documents, sheets, images, audio or video.  

Teachers have the possibility to leave a comment about the respective 

homework or organize discussion groups focusing on the subject. Therefore, 

this platform sets itself apart with the high level of interaction it offers. 

With the current project, DREAM, we intend to encourage quality and 

efficiency in computer and technology-assisted learning, offering theoretical 

support and spreading these experiences to our partner schools. 

The activities in this pack feed into the Skills and Capability Framework by 

providing contexts for the development of Thinking, Problem Solving and 

Decision Making Skills and Managing Information.  Open ended questions 

facilitate pupils’ Using Mathematics.  ICT opportunities are provided through 

using the Moodle platform and additional tasks researching information using 

the internet.  

Opportunities exist to develop the Key Elements of: 

• Employability – exploring how the skills developed in Mathematics will be 

useful for business records; demonstrating how to be enterprising when 

discussing potential fund raising activities. 

• Curiosity- making young pupils discover answers to the mysteries 

surrounding them by themselves 
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•  Model development- once a real-world problem is identified, its solution 

may be obtained by creating an efficient/creative mathematical model 

•   Practicability – making students understand the relevance of what they are 

studying for the real world 

Learning and teaching Mathematics can be made more effective when a 

balance of practical, oral and written tasks is provided. This pack provides 

information and scenarios to assist in this task. The intention is to provide 

young people with 8 activities that are related to their age and attainment. One 

aspect of the pack is the use of the PowerPoint presentations in order to 

stimulate whole-class discussions before and after the activities have been 

completed. The emphasis should be on helping young people understand what 

the problems are and to become aware of the technical vocabulary surrounding 

the issues. 

General Pedagogical Recommendations: 

 Watching a PowerPoint presentation or a film, which introduces the 

theme of real-life lesson 

 Discovering the link between real life and the mathematical concept 

that governs the given situation 

 Recall theoretical mathematical concepts 

 Frontal discussion of the real situation in the matter 

 Solving some parts of the problem by group of students using 

mathematical tools: minicomputers, Geogebra, Excel, internet 

 Discussing solutions, looking for the optimal option 

 Student's task: loads the optimal solution found on the MOODLE 

platform 

 Teacher’s task: controls the homework of the student and provides 

feedback. 

 

http://www.elearning.ro/platforma-elearning-moodle 

https://ceae.ro/proiect-invatarea-fizicii/ 

 

  

http://www.elearning.ro/platforma-elearning-moodle
https://ceae.ro/proiect-invatarea-fizicii/
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Theoretical background 

Linear Equation or first-degree equation in one variable.  
 Definition. A linear or first-degree equation (LE) in one variable x is an 

equation that can be written in the standard form  

ax + b=0,  where a and b are real numbers and a  ≠ 0 

Linear equations are also called first degree equations, as the highest 

power of the variable (or pronumeral) in these equations is 1. 

E.g. x + 5 = 9 is an equation of the first degree, which is often called a linear 

equation. 

Many problems can be solved by using linear equations. 

Recall that: 

Equations behave like a balance. So we need to apply the same operation to 

both sides of an equation to maintain the balance. This means we can: 

 add the same number to both sides of an equation 

 subtract the same number from both sides of an equation 

 multiply both sides of an equation by the same number 

 divide both sides of an equation by the same number 

The second degree equation 
Often, the simplest way to solve "ax2 + bx + c = 0" for the value of x is 

to factor the quadratic, set each factor equal to zero, and then solve each 

factor. But sometimes the quadratic is too messy, or it doesn't factor at all, or 

you just don't feel like factoring. While factoring may not always be 

successful, the Quadratic Formula can always find the solution. 

The Quadratic Formula uses the "a", "b", and "c" from "ax2 + bx + c", where 

"a", "b", and "c" are just numbers; they are the "numerical coefficients" of 

the quadratic equation they've given you to solve. 

The Quadratic Formula: For ax2 + bx + c = 0, the values of x which are the 

solutions of the equation are given by: 

 

https://www.mathsteacher.com.au/year10/ch01_algebraic/01_expressions/exp.htm#M1
https://www.purplemath.com/modules/factquad.htm
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For the Quadratic Formula to work, you must have your equation arranged in 

the form "(quadratic) = 0". Also, the "2a" in the denominator of the Formula 

is underneath everything above, not just the square root. And it's a "2a" under 

there, not just a plain "2". Make sure that you are careful not to drop the square 

root or the "plus/minus" in the middle of your calculations, or I can guarantee 

that you will forget to "put them back in" on your test, and you'll mess yourself 

up. Remember that "b2" means "the square of ALL of b, including its sign", so 

don't leave b2 being negative, even if b is negative, because the square of a 

negative is a positive. 

In other words, don't be sloppy and don't try to take shortcuts, because it will 

only hurt you in the long run. Trust me on this! 

Here are some examples of how the Quadratic Formula works: 

 Solve x2 + 3x – 4 = 0 

This quadratic happens to factor: 

x2 + 3x – 4 = (x + 4)(x – 1) = 0 

...so I already know that the solutions are x = –4 and x = 1. How would my 

solution look in the Quadratic Formula? Using a = 1, b = 3, and c = –4, my 

solution looks like this: 
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Then, as expected, the solution is x = –4, x = 1. 

Suppose you have ax2 + bx + c = y, and you are told to plug zero in for y. The 

corresponding x-values are the x-intercepts of the graph. So 

solving ax2 + bx + c = 0 for x means, among other things, that you are trying 

to find x-intercepts. Since there were two solutions for x2 + 3x – 4 = 0, there 

must then be two x-intercepts on the graph. Graphing, we get the curve below: 

As you can see, the x-intercepts (the red dots above) match the solutions, 

crossing the x-axis at x = –4 and x = 1. This shows the connection 

between graphing and solving: When you are solving 

"(quadratic) = 0", you are finding the x-intercepts of 

the graph. This can be useful if you have a graphing 

calculator, because you can use the Quadratic 

Formula (when necessary) to solve a quadratic, and 

then use your graphing calculator to make sure that the 

displayed x-intercepts have the same decimal values as 

do the solutions provided by the Quadratic Formula. 

Note, however, that the calculator's display of the 

graph will probably have some pixel-related round-off 

error, so you'd be checking to see that the computed and graphed values were 

reasonably close; don't expect an exact match. 

 Solve 2x2 – 4x – 3 = 0. Round your answer to two decimal places,  if 

necessary. 

There are no factors of (2)(–3) = –6 that add up to –4, so I know that this 

quadratic cannot be factored. I will apply the Quadratic Formula. In this 

case, a = 2, b = –4, and c = –3: 

Then the answer is x = –0.58, x = 2.58, rounded to two decimal places. 

Warning: The "solution" or "roots" or "zeroes" of a quadratic are usually 

required to be in the "exact" form of the answer. In the example above, the 

exact form is the one with the square roots of ten in it. You'll need to get a 

calculator approximation in order to graph the x-intercepts or to simplify the 

final answer in a word    problem. But unless you have a good reason to think 

that the answer is supposed to be a rounded answer, always go with the exact 

https://www.purplemath.com/modules/intrcept.htm
https://www.purplemath.com/modules/factquad.htm
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form.Compare the solutions of  2x2 – 4x – 3 = 0 with 

the x-intercepts of the graph: 

Just as in the previous example, the x-intercepts match 

the zeroes from the Quadratic Formula. This is always 

true. The "solutions" of an equation are also the x-

intercepts of the corresponding graph. 

Discriminant signs 

In the quadratic formula, the expression underneath the 

square root sign is called the discriminant of the 

quadratic equation, and is often represented using an 

upper case D or an upper case Greek delta: 

∆= 𝑏2 − 4𝑎𝑐 

 

 

A quadratic equation with real coefficients can have either one or two distinct 

real roots, or two distinct complex roots. In this case the discriminant 

determines the number and nature of the roots. There are three cases: 

 If the discriminant is positive, then there are two distinct roots 

−𝑏+√∆

2𝑎
  and   

−𝑏−√∆

2𝑎
 

https://en.wikipedia.org/wiki/Discriminant
https://en.wikipedia.org/wiki/Delta_(letter)
https://en.wikipedia.org/wiki/File:Quadratic_eq_discriminant.svg
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both of which are real numbers. For quadratic equations 

with rational coefficients, if the discriminant is a square number, then the roots 

are rational—in other cases they may be quadratic irrationals. 

 If the discriminant is zero, then there is exactly one real root 

−𝑏

2𝑎
 

sometimes called a repeated or double root. 

 If the discriminant is negative, then there are no real roots. Rather, 

there are two distinct (non-real) complex roots[10] 

−𝑏+𝑖√−𝛥

2𝑎
   and   

−𝑏−𝑖√−𝛥

2𝑎
 

which are complex conjugates of each other. In these expressions i is 

the imaginary unit. 

Thus the roots are distinct if and only if the discriminant is non-zero, and the 

roots are real if and only if the discriminant is non-negative. 

Geometric interpretation 

 

 

Graph of y = ax2 + bx + c, where a and the discriminant b2 − 4ac are positive, 

with 

https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Square_number
https://en.wikipedia.org/wiki/Quadratic_irrational
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Multiple_root
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Quadratic_equation#cite_note-10
https://en.wikipedia.org/wiki/Complex_conjugate
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/File:Quadratic_function_graph_key_values.svg
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 Roots and y-intercept in red 

 Vertex and axis of symmetry in blue 

 Focus and directrix in pink 

 
Visualisation of the complex roots of y = ax2 + bx + c: the parabola is rotated 

180° about its vertex (orange). Its x-intercepts are rotated 90° around their mid-

point, and the Cartesian plane is interpreted as the complex plane (green).[11] 

The function f(x) = ax2 + bx + c is the quadratic function.[12] The graph of any 

quadratic function has the same general shape, which is called a parabola. The 

location and size of the parabola, and how  it opens, depend on the values 

of a, b, and c. As shown in Figure 1, if a > 0, the parabola has a minimum point 

and opens upward. If a < 0, the parabola has a maximum point and opens 

downward. The extreme point of the parabola, whether minimum or 

maximum, corresponds to its vertex. The x-coordinate of the vertex will be 

located at (-b/2a, -(b2-4ac)/4a), and the y-coordinate of the vertex may be 

found by substituting this x-value into the function. The y-intercept is located 

at the point (0, c). 

https://en.wikipedia.org/wiki/Quadratic_equation#cite_note-11
https://en.wikipedia.org/wiki/Quadratic_function
https://en.wikipedia.org/wiki/Quadratic_equation#cite_note-12
https://en.wikipedia.org/wiki/Parabola
https://en.wikipedia.org/wiki/Vertex_(curve)
https://en.wikipedia.org/wiki/File:Quadratic_function_graph_complex_roots.svg
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The solutions of the quadratic equation ax2 + bx + c = 0 correspond to 

the roots of the function f(x) = ax2 + bx + c, since they are the values of x for 

which f(x) = 0. As shown in Figure 2, if a, b, and c are real numbers and 

the domain of  f  is the set of real numbers, then the roots of f are exactly the x-

coordinates of the points where the graph touches the x-axis. As shown in 

Figure 3, if the discriminant is positive, the graph touches the x-axis at two 

points; if  it is zero, the graph touches at one point; and if it is  negative, the 

graph does not touch the x-axis. 

Examples and applications 

 

The trajectory of the cliff jumper is parabolic because horizontal displacement 

is a linear function of time  

𝑥(𝑡) = 𝑣𝑥𝑡, while vertical displacement is a quadratic function of  

time .𝑦(𝑡) = ℎ0 + 𝑣𝑦𝑡 +
1

2
𝑔𝑡2  As a result, the path follows a quadratic 

equation  

The golden ratio is found as the positive solution of the quadratic equation x2-

x-1=0 

The equations of the circle and the other conic sections—ellipses, parabolas, 

and hyperbolas—are quadratic equations in two variables. 

Given the cosine or sine of an angle, finding the cosine or sine of the angle that 

is half as large involves solving a quadratic equation. 

The process of simplifying expressions involving the square root of an 

expression involving the square root of another expression equates to finding 

the two solutions of a quadratic equation. 

https://en.wikipedia.org/wiki/Root_of_a_function
https://en.wikipedia.org/wiki/Real_numbers
https://en.wikipedia.org/wiki/Domain_(mathematics)
https://en.wikipedia.org/wiki/Coordinates
https://en.wikipedia.org/wiki/X-axis
https://en.wikipedia.org/wiki/Parabola
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Circle
https://en.wikipedia.org/wiki/Conic_sections
https://en.wikipedia.org/wiki/Ellipse
https://en.wikipedia.org/wiki/Parabola
https://en.wikipedia.org/wiki/Hyperbola
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Bisection#Angle_bisector
https://en.wikipedia.org/wiki/Bisection#Angle_bisector
https://en.wikipedia.org/wiki/Nested_radical
https://en.wikipedia.org/wiki/Nested_radical
https://en.wikipedia.org/wiki/File:La_Jolla_Cove_cliff_diving_-_02.jpg
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Descartes' theorem states that for every four kissing (mutually tangent) circles, 

their radii satisfy a particular quadratic equation. 

The equation given by Fuss' theorem, giving the relation among the radius of 

a bicentric quadrilateral's inscribed circle, the radius of its circumscribed 

circle, and the distance between the centers of those circles, can be expressed 

as a quadratic equation for which the distance between the two circles' centers 

in terms of their radii is one of the solutions. The other solution of the same 

equation in terms of the relevant radii gives the distance between the 

circumscribed circle's center and the center of the ex-circle of an ex-tangential 

quadrilateral. 

 

Geometric Shapes - Areas 
Square 

 

 

The area of a square can be calculated as A = a2      

 

Rectangle 

 

The area of a rectangle can be calculated as 

A = a b          

Parallelogram 

The area of a parallelogram can be calculated as 

A = a h   = a b sin α                         

 

https://en.wikipedia.org/wiki/Descartes%27_theorem
https://en.wikipedia.org/wiki/Radius
https://en.wikipedia.org/wiki/Fuss%27_theorem
https://en.wikipedia.org/wiki/Bicentric_quadrilateral
https://en.wikipedia.org/wiki/Inscribed_circle
https://en.wikipedia.org/wiki/Circumscribed_circle
https://en.wikipedia.org/wiki/Circumscribed_circle
https://en.wikipedia.org/wiki/Excircle
https://en.wikipedia.org/wiki/Ex-tangential_quadrilateral
https://en.wikipedia.org/wiki/Ex-tangential_quadrilateral
https://www.engineeringtoolbox.com/area-geometric-figures-d_1250.html
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Triangle 

 

The area of a 

triangle can be 

calculated as   

A = a h / 2   

 

 

Trapezoid 

 

The area of a trapezoid can be calculated 

as 

A = 1/2 (a + b) h  = m h                            

Circle 

The area of a circle can be calculated as 

A = π/4 d2 = π r2  

  C = 2 π r  =  π d                           

Where C = circumference 

 

Sphere 

Lateral surface area of a sphere can be expressed as 

A = 4 π r2                                    
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Surface areas of common solids 

Shape Equation Variables 

Cube  

6s2 
s = side length 

Cuboid  2(lw+lh+wh) l= length, w = width, h = height 

Triangular 

prism 

bh+l(a+b+c) 

b = base length of triangle, h = height of 

triangle, l = distance between triangular 

bases, a, b, c = sides of triangle 

All prisms 2B+Ph 
B = the area of one base, P = the perimeter 

of one base, h = height 

Sphere  4𝜋r2 or 𝜋d2 r = radius of sphere, d = diameter 

 

https://en.wikipedia.org/wiki/Cube
https://en.wikipedia.org/wiki/Cuboid
https://en.wikipedia.org/wiki/Triangular_prism
https://en.wikipedia.org/wiki/Triangular_prism
https://en.wikipedia.org/wiki/Prism_(geometry)
https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/File:Inscribed_cone_sphere_cylinder.svg
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Circle Definitions 

The circle is the geometric place of all points from a plane situated at the same 

distance r from a point –O, named the centre of the circle. 

 Circumference: The circumference of a circle is the distance around it. 

 Diameter: Any straight line that passes through the centre of the circle to two 

points on the perimeter (2r). 

 Radius: Any straight line that originates at the centre of a circle and ends at 

the perimeter (r). 

 Chord: A straight line whose ends are on the perimeter of a circle. A diameter  

is the longest possible chord. 

 Segment: A part of the circle separated from the rest of a circle by a chord. 

 Tangent: A tangent to a circle is a straight line which touches the circle at 

only one point (so it does not cross the circle - it just touches it). 

 Point of contact: Where a tangent touches a circle. 

 Arc: A part of the curve along the perimeter of a circle. 

 Angle on major arc: The larger of 2 angles when a circle is split into 2 uneven 

parts. Greater than 180 degrees. 

 Angle of centre: An angle at the centre of a triangle between two lines that 

intersect with the perimeter. 

 Angle at circumference on minor arc: The smaller of 2 angles when a circle 

is split into 2 uneven parts. Less than 180 degrees. 

 Sector: A portion of a circle resembling a 'slice of pizza'. 
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In other words, area of sector = area of circle × A/360 (πr2 × A/360) 

arc length = circumference of circle × A/360 (2πr × A/360) 

Operations on vectors 
A vector is an object that has both a magnitude and a direction. Geometrically, 

we can picture a vector as a directed line segment, whose length is the 

magnitude of the vector and with an arrow indicating the direction. The 

direction of the vector is from its tail to its head. 

 

Two vectors are the same if they have the same 

magnitude and direction. This means that if we         

take a vector and translate it to a new 

position (without rotating it), then the 

vector we obtain at the end of this process is the 

same vector we had in the beginning. 

Two examples of vectors are those that represent force and velocity. Both force 

and velocity are in a particular direction. The magnitude of the vector would 

indicate the strength of the force or the speed associated with the velocity. 

We denote vectors using boldface as in aa or bb. Especially when writing by 

hand where one cannot easily write in boldface, people will sometimes denote 

vectors using arrows as in �⃗�  or �⃗⃗�, or they use other markings. We won't need 

to use arrows here. We denote the magnitude of the vector aa by ∥a∥∥a∥. When 

we want to refer to a number and stress that it is not a vector, we can call the 

number a scalar. We will denote scalars with italics, as in aa or bb. 

You can explore the concept of the magnitude and direction of a vector using 

the below applet. Note that moving the vector around doesn't change the 

vector, as the position of the vector doesn't affect the magnitude or the 

direction. But if you stretch or turn the vector by moving just its head or its 

tail, the magnitude or direction will change.  

There is one important exception to vectors having a direction. The zero 

vector, denoted by a boldface 00, is the vector of zero length. Since it has no 

length, it is not pointing in any particular direction. There is only one vector of 

zero length, so we can speak of the zero vector. 

https://mathinsight.org/definition/magnitude_vector
https://mathinsight.org/definition/scalar
https://mathinsight.org/zero_vector
https://mathinsight.org/zero_vector
https://mathinsight.org/image/vector
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Operations on vectors 

We can define a number of operations on vectors geometrically without 

reference to any coordinate system. Here we defineaddition, subtraction, 

and multiplication by a scalar.  

Addition of vectors 
Given two vectors a and b, we form their sum a+b, as follows. We translate the 

vector bb until its tail coincides with the head of aa. (Recall such translation 

does not change a vector.) Then, the directed line segment from the tail of aa to 

the head of bb is the vector a+ba+b. 

 
The vector addition is the way forces and velocities combine. For example, if 

a car is travelling due north at 20 miles per hour and a child in the back seat 

behind the driver throws an object at 20 miles per hour toward his sibling who 

is sitting due east of him, then the velocity of the object (relative to the ground!) 

will be in a north-easterly direction. The velocity vectors form a right triangle, 

where the total velocity is the hypotenuse. Therefore, the total speed of the 

object (i.e., the magnitude of the velocity vector) is √202 + 202=20√2 miles 

per hour relative to the ground. 

Addition of vectors satisfies two important properties. 

1. The commutative law, which states the order of addition doesn't matter 

 

2. The associative law, which states that the sum of three vectors does not 

depend on which pair of vectors is added first 

Vector subtraction 
Before we define subtraction, we define the vector −a−a, which is the opposite 

of aa. The vector −a−a is the vector with the same magnitude as aa but that is 

pointed in the opposite direction. 

https://mathinsight.org/vector_introduction#addition
https://mathinsight.org/vector_introduction#subtraction
https://mathinsight.org/vector_introduction#scalarmultiplication
https://mathinsight.org/image/vector_a_plus_b
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We define subtraction as addition with the opposite of a vector: 

b−a= b+ (−a). 

This is equivalent to turning vector a around in the applying the above rules 

for addition. Can you see how the vector x in the below figure is equal to b−a?  

Notice how this is the same as stating that a + x= b, just like with subtraction 

of scalar numbers. 

 

Scalar multiplication 
Given a vector a and a real number (scalar) λ, we can form the vector λa as 

follows. If λ is positive, then λa is the vector whose direction is the same as the 

direction of a and whose length is λ times the length of a. In this case, 

multiplication by λ simply stretches (if λ>1) or compresses (if 0<λ<1) the 

vector a. 

If, on the other hand, λ is negative, then we have to take the opposite 

of a before stretching or compressing it. In other words, the vector λa points in 

the opposite direction of a, and the length of λa is |λ| times the length of a. No 

matter the sign of λ, we observe that the magnitude of λa is |λ| times the 

magnitude of a: ∥λa∥=|λ|∥a∥. 

 

Theoretical background in physics 
 

The applications present in this brochure, as well as those accessible on the 

Moddle platform focus mainly on movements of bodies, more precisely on the 

https://mathinsight.org/definition/scalar
https://mathinsight.org/image/vector_opposite
https://mathinsight.org/image/vector_b_minus_a
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rectiliniar uniform movement of a body determined by its weight: vertical free 

fall, throwing an object obliquely or horizontally. Due to the fact that these 

may find applications in the launch of 

satellites, there is also a lesson presenting 

the necessary conditions for the launch, 

which also deals with knowledge of uniform 

circular movement. Each movement is 

influenced by its surroundings and the 

system of reference, as well as the 

combination of movements (through 

vectors), which is explained in a different 

lesson.  

Velocity–time graphs 
 
If the velocity of a body is plotted against  time, the graph obtained is a 

velocity–time graph. It provides a way of solving motion problems. Tape 

charts are crude velocity–time graphs that show the velocity changing in jumps 

rather than smoothly, as occurs in practice. A motion sensor gives a smoother 

plot. The area under a velocity–time graph measures the distance travelled. In 

Figure 1 AB is the velocity–time graph for a body moving with a uniform 

velocity of 20 m/s. Since distance = average velocity × time, after 5 s it will 

have moved 20 m/s × 5 s = 100 m. This 

is the shaded area under the graph, i.e. 

rectangle OABC. 

In Figure 2 PQ is the velocity–time 

graph for a body moving with uniform 

acceleration. At the start of the timing 

the velocity is 20 m/s but it increases 

steadily to 40 m/s after 5 s. If the 

distance covered equals the area under 

PQ, i.e. the shaded area OPQS, then 

distance = area of rectangle OPRS + area of triangle PQR = OP × OS + 1/ 2 × 

PR × QR (area of a triangle = 1/2base × height) = 20 m/s × 5 s + 1/2 × 5 s × 

20 m/s = 100 m + 50 m = 150 m 

time/s 
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In Figure 1, the slope of AB is zero, as is the acceleration. In Figure 2, the slope 

of PQ is QR/PR = 20/5 = 4: the acceleration is 4 m/s2. 

 

 

Circular motion 
There are many examples of bodies moving in circular paths – rides at a 

funfair, clothes being spun dry in a washing machine, the planets going round 

the Sun and the Moon circling the Earth. When a car turns a corner it may 

follow an arc of a circle. ‘Throwing the hammer’ is a sport practised at 

highland games in Scotland, in which the hammer is whirled round and round 

before it is released. 

Centripetal force 

In the figure, a ball attached to a 

string is being whirled round in a 

horizontal circle. Its direction of 

motion is constantly changing. 

At A it is along the tangent at A; 

shortly afterwards, at B, it is 

along the tangent at B; and so on. 

Velocity has both size and 

direction; speed has only size. 

Velocity is speed in a stated 

direction and if the direction of a moving body changes, even if its speed does 

not, then its velocity has changed. A change of velocity is an acceleration,and 

so during its whirling motion the ball is accelerating. It follows from Newton’s 

first law of motion that if we consider a body moving in a circle to be 

accelerating then there must be a force acting on it to cause the acceleration. 

In the case of the whirling ball it is reasonable to say the force is provided by 

the string pulling inwards on the ball. Like the acceleration, the force acts 

towards the centre of the circle and keeps the body at a fixed distance from the 

centre. 

A larger force is needed if 

(i) the speed v of the ball is increased, 

(ii) the radius r of the circle is decreased, 

(iii) the mass m of the ball is increased. 

The rate of change of direction, and so the acceleration a, is increased by (i) 

and (ii). It can be shown that 

a = v2/r and so, from F = ma, 
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we can write  F  mv 2/r 

This force, which acts towards the centre and keeps a body moving in a 

circular path, is called the centripetal force (centre-seeking force). Should the 

force be greater than the string can bear, the string breaks and the ball flies off  

i.e. in the direction of travel when the string broke (as Newton’s first law of 

motion predicts). It is not thrown outwards. 

Whenever a body moves in a circle (or circular arc) there must be a centripetal 

force acting on it. In throwing the hammer it is the pull of the athlete’s arms 

acting on the hammer towards the centre of the whirling path. When a car 

rounds a bend a frictional force is exerted inwards by the road on the car’s 

tyres. 

 

Satellites 
For a satellite of mass m orbiting the Earth at  radius r with orbital speed v, the 

centripetal force, F = mv2/r , is provided by gravity. To put an artificial satellite 

in orbit at a certain  height above the Earth it must enter the orbit at the  correct 

speed. If it does not, the force of gravity, which decreases as height above the 

Earth increases, will not be equal to the centripetal force needed for the orbit. 

This can be seen by imagining a shell 

fired horizontally from the top of a very 

high mountain.  If gravity did not pull it 

towards the centre of the Earth it would 

continue to travel horizontally, taking 

path A. In practice it might take path B. 

A second shell fired faster might take 

path C and travel further. If a third shell 

is fired even faster, it might never catch 

up with the rate at which the Earth’s 

surface is falling away. It would remain at the same height above the Earth 

(path D) and return to the mountain top, behaving like a satellite. The orbital 

period T (the time for one orbit)  of a satellite = distance/velocity. So for a 

circular orbit T=2𝜋 r/ v 

Satellites in high orbits have longer periods than those in low orbits. The Moon 

is kept in a circular orbit round the Earth by the force of gravity between it and 

the Earth. It has an orbital period of 27 days. 

a) Communication satellites 

These circle the Earth in orbits above the equator. Geostationary satellites 

have an orbit high above the equator (36 000 km); they travel with the same 
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speed as the Earth rotates, so appear to be stationary at a particular point above 

the Earth’s surface – their orbital period is 24 hours. They are used for 

transmitting television, intercontinental telephone and data signals. 

Geostationary satellites need to be well separated so that they do not interfere 

with each other; there is room for about 400. Mobile phone networks use many 

satellites in much lower equatorial orbits; they are slowed by the Earth’s 

atmosphere and their orbit has to be regularly adjusted by firing a rocket 

engine.Eventually they run out of fuel and burn up in the atmosphere as they 

fall to Earth. 

b) Monitoring satellites 

These circle the Earth rapidly in low polar orbits, i.e. passing over both poles; 

at a height of 850 km the orbital period is only 100 minutes. The Earth rotates 

below them so they scan the whole surface at short range in a 24-hour period 

and can be used to map or monitor regions of the Earth’s surface which may 

be inaccessible by other means.They are widely used in weather forecasting to 

continuously transmit infrared pictures of cloud  patterns down to Earth , which 

are picked up in turn by receiving stations around the world. 

Questions 

A satellite close to the Earth (at a height of about 200 km) 

has an orbital speed of 8 km/s. Taking the radius of the orbit 

as approximately equal to the Earth’s radius of 6400 km, 

calculate the time it takes to make one orbit. 

 

Throwing an object obliquely 
 

A projectile is any object that is cast, fired, flung, heaved, hurled, pitched, 

tossed, or thrown. (This is an informal definition.) The path of a projectile is 

called its trajectory. Some examples of projectiles include… 

 a baseball that has been pitched, batted, or thrown 

 a bullet the instant it exits the barrel of a gun or rifle 

 a bus driven off an uncompleted bridge 

 a moving airplane in the air with its engines and wings disabled 

 a runner in mid stride (since they momentarily lose contact with the 

ground) 

 the space shuttle or any other spacecraft after main engine cut off 

(MECO) 
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The force of primary importance acting on a projectile is gravity. This is not 

to say that other forces do not exist, just that their effect is minimal in 

comparison. A tossed helium-filled balloon is not normally considered a 

projectile as the drag and buoyant forces on it are as significant as the weight. 

Helium-filled balloons can't be thrown long distances and don't normally fall. 

In contrast, a crashing airplane would be considered a projectile. Even though 

the drag and buoyant forces acting on it are much greater in absolute terms 

than they are on the balloon, gravity is what really drives a crashing airplane. 

The normal amounts of drag and buoyancy just aren't large enough to save the 

passengers on a doomed flight from an unfortunate end. A projectile is any 

object with an initial non-zero, horizontal velocity whose acceleration is due 

to gravity alone. 

An essential characteristic of a projectile is that its future has already been 

preordained. Batters may apply "body English" after hitting a long ball, but 

they do so strictly for psychological reasons. No amount of leaning to one side 

will make a foul ball turn fair. Of course, the pilot of a disabled airplane may 

regain control before crashing and avert disaster, but then the airplane wouldn't 

be a projectile anymore. An object ceases to be a projectile once any real effect 

is made to change its trajectory. The trajectory of a projectile is thus entirely 

determined the moment it satisfies the definition of a projectile. 

The only relevant quantities that might vary from projectile to projectile then 

are initial velocity and initial position 

This is where we run into some linguistic complications. Airplanes, guided 

missiles, and rocket-propelled spacecraft are sometimes also said to follow a 

trajectory. Since these devices are acted upon by the lift of wings and the thrust 

of engines in addition to the force of gravity, they are not really projectiles. To 

get around this dilemma, it is common to use the term ballistic trajectory when 

dealing with projectiles. The word ballistic has its origins in the Greek word 

βαλλω (vallo), to throw, and surfaces repeatedly in the technical jargon of 

weaponry from ancient to modern times. For example… 

 The ballista, which looks something like a giant crossbow, was a siege 

engine used in medieval times to hurl large stones, flaming bundles, 

infected animal carcasses, and severed human heads into fortifications. 

Before the invention of gunpowder, ballista’s (and catapults and 

trebuchets) were the weapons of choice for conquerors. 

 An intercontinental ballistic missile is a device for delivering nuclear 

warheads over long distances. At the start of its journey an ICBM is guided 

by a rocket engine and stabilizer fins, but soon thereafter it enters the 
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phase of its journey where it is effectively in free fall, traveling fast enough 

to keep it above the earth's atmosphere for a while but not fast enough to 

enter orbit permanently. The adjective "intercontinental" refers to the long 

range capabilities, while the largely free fall journey it takes makes it 

"ballistic". ICBMs are the ultimate killing machines, but they have never 

been used in combat to date. 

The wide geographic range as well as the wide historic range of these things 

we call projectiles raises some problems for the typical student of Physics. 

When a projectile is sent on a very long journey, as is the case with ICBMs, 

the magnitude and direction of the acceleration due to gravity changes. Gravity 

isn't constant to begin with, but the variation is not noticeable over everyday 

ranges in altitude. From the deepest mines in South Africa to the highest 

altitudes traversed by commercial airplanes, the magnitude of the acceleration 

due to gravity is always effectively 9.8 m/s2 ± 0.05 m/s2. Similarly, unless you 

routinely travel medium to long distances, you aren't likely to experience much 

of a change in the direction of gravity either. To experience a 1° shift in 

"down" would require traveling 1 360  of the circumference of the Earth — 

roughly 110 km (70 mi) or the length of a typical morning commute to work 

in Southern California. Thus for projectiles that won't rise higher than an 

airplane nor travel farther than the diameter of L.A., gravity is effectively 

constant. This covers the first five of the examples described at the beginning 

of this section (baseballs, bullets, buses in action-adventure movies, distressed 

airplanes, and joggers) but not the sixth (the space shuttle after MECO). 

To distinguish such simple projectiles from those where variations in gravity 

and the curvature of the Earth are significant, I propose using the 

term simple projectile. For the remaining problems, the 

term general projectile seems appropriate since a general solution in 

Mathematics is one that also includes the special cases, but I'm less adamant 

about this term. 

Consider an effectively spherical earth with a single tall mountain sticking out 

of it like a giant tumor. Now imagine using this location as a place to launch 

projectiles horizontally with varying initial velocities. What effect would 

velocity have on range? Well, obviously fast projectiles will travel farther than 

slow ones. A basic concept associated with speed is that "faster means farther", 

but the relationship is only approximately linear on a spherical earth. For a 

while, doubling speed would mean doubling distance, but eventually the 

curvature of the Earth would start to mess things up. At some speed our 

hypothetical projectile would make it a quarter of the way around the Earth 
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and then half way around and then eventually all the way around. At this point 

our general projectile ceases to be an object with a launch point and a landing 

point and it starts being a satellite, permanently circling the Earth, perpetually 

changing direction and thus accelerating under the influence of gravity, but 

never landing anywhere. Technically, such an object would still be a general 

projectile, since gravity is the primary source of its acceleration, but somehow 

this doesn't seem right. Objects traveling through what we call "outer space" 

hardly seem like projectiles any more. They seem like they reside more in the 

realm of celestial mechanics than terrestrial mechanics. Such distinctions are 

arbitrary, however, as there is only one mechanics. The laws of Physics are 

assumed universal until it can be demonstrated otherwise. The unification of 

physical law is a theme that surfaces from time to time in Physics. 

A projectile and a satellite are both governed by the same physical principles 

even though they have different names. A simple projectile is made 

mathematically simple by an idealization. By assuming a constant value for 

the acceleration due to gravity, we make the problem easier to solve and (in 

many cases) do not really lose all that much in the way of accuracy. Every 

projectile problem is essentially two one-dimensional motion problems… 

The kinematic equations for a simple projectile are those of an object traveling 

with constant horizontal velocity and constant vertical acceleration. 

The equations of motion for a simple projectile  

equation horizontal vertical 

acceleration ax  = 0 ay  = −g 

velocity-time vx  = v0x vy  = v0y − gt 

displacement-time x  = x0 + v0xt y  = y0 + v0yt − ½gt2 

velocity-displacement vy
2  = v0y

2 − 2g(y − y0) 
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The trajectory of a simple projectile is a parabola.  

Use the horizontal direction to determine the 

range as a function of time… 

x =  x0 + v0xt + ½axt2 

x =  0 + (v cos θ) t + 0 

                     xfinal =  (v cos θ) tfinal 

Use the vertical direction to determine the time in the air… 

y = y0 + v0yt + ayt2/2 

y = y0 + (v sin θ)t – gt2/2 

0 = 0 + (v sin θ)tfinal − gt2final/2 

tfinal =  

2(v sin θ) 

 
g 

Combine these two equations… 

 

Questions 

1 A stone falls from rest from the top of a high tower. Ignore air resistance 

and take g = 10 m/s2. a What is its velocity after 

(i) 1 s, (ii) 2 s, (iii) 3 s,  (iv) 5 s? 

b How far has it fallen after 

(i) 1 s, (ii) 2 s, (iii) 3 s, (iv) 5 s? 

2 An object falls from a hovering helicopter and hits the ground at a speed of 

30 m/s. How long does it take the object to reach the ground and how far does 

it fall? Sketch a velocity–time graph for the object (ignore air resistance).  

 

xfinal =  (v cos θ)
2(𝑣 sin θ)

𝑔
   

xfinal= 
𝑣2 𝑠𝑖𝑛 2𝜃

𝑔
    xmax =2xfinal  

https://physics.info/projectiles/slide-chicago.html
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Forces and resultants 

A vector quantity is one such as force which is described completely only if 

both its size (magnitude) and direction are stated. It is not enough to say, for 

example, a force of 10 N, but rather a force of 10 N acting vertically 

downwards. A vector can be represented by a straight line whose length 

represents the magnitude of the quantity and whose direction gives its line of 

action. An arrow on the line shows which way along the line it acts. 

A scalar quantity has magnitude only. Mass is a scalar and is completely 

described when its value is known. Scalars are added by ordinary arithmetic; 

vectors are added geometrically, taking account of their directions as well as 

their magnitudes. 

Force has both magnitude (size) and direction. It is represented in diagrams by 

a straight line with an arrow to show its direction of action. Usually more than 

one force acts on an object. As a simple 

example, an object resting on a table is pulled 

downwards by its weight W and pushed 

upwards by a force R due to the table 

supporting it Since the object is at rest, the 

forces must balance, i.e. R = W. 

Parallelogram law 

If  two forces acting at a point are represented 

in size and direction by the sides of a parallelogram drawn 

from the point, their resultant is represented in size and 

direction by the diagonal of the parallelogram drawn from 

the point. 

Examples of addition of forces 

1 Two people carrying a heavy bucket. The weight of 

the bucket is balanced by the 

force F, the resultant of F1 and F2  

2 Two tugs pulling a ship. The resultant of T1 and 

T2 is forwards in direction and so the ship moves 

forwards (as long as the resultant is greater than the 

resistance to motion of the sea and the wind). 

Questions 

1 Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100 N 

in one direction and Daniel with a force of 140 N in the opposite direction. If 

the ring does not move, what force does Helen exert if she pulls in the same 

direction as Jo? 
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2 A boy drags a suitcase along the ground with a force of 100 N. If the frictional 

force opposing the motion of the suitcase is 50 N, what is the resultant forward 

force on the suitcase? 

3 A picture is supported by two vertical strings; if the weight of the picture is 

50 N what is the force exerted by each string? 

4 Using a scale of 1 cm to represent 10 N, find the size and direction of the 

resultant of forces of 30 N and 40 N acting at right angles to each other. 

5 Find the size of the resultant of two forces of 5 N and 12 N acting 

a in opposite directions to each other, 

b at 90° to each other. 
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1. Projectile Motion with an Initial Horizontal 

Velocity 
 

Field of application: Physics 

Required knowledge: Calculations with real numbers, basic Mathematical 

operations, second grade equations, uniform rectilinear motion  

Project:  understanding the influence of gravity over a body’s movement; 

applying the knowledge to the real world, with an experiment 

Moodle:  

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-1 
Authors: Aspasia Vogiatzi, Georgios Kottas, students from 1o Geniko Lykeio, 

Aigiou, Greece 

Coordinator: Nikolaos Diamantopoulos 

The assignment: of this lesson is to study the movement of a ball with initial 

horizontal velocity at a certain height  

Resources: Information sheet – Source: 

https://www.youtube.com/watch?v=iNEYo_UNFYQ . 

Generalization: Research can be extended to any body being thrown at a 

certain height horizontally, under the influence of gravity. 

 

 

 

 

 

  

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-1
https://www.youtube.com/watch?v=iNEYo_UNFYQ
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2. Speed and Distance 
 

Field of application: Physics 

Required knowledge: calculating areas, graphing first grade functions and 

interpreting their intersections with the axes (OX, OY) 

Project: familiarizes students with the link between velocity, time and their 

graphical representation. The area under a graph often gives useful 

information. 

In this activity you will explore one example of this, the area under a speed–

time graph. 

 

Moodle: 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-8 

Authors: Evangelia Karatza, Dimitra Skoura, students from 1o Geniko 

Lykeio, Aigiou, Greece 

Coordinator: Nikolaos Diamantopoulos, Spyridon Potamitis 

The assignment: plotting the velocity of a body against time, in order to 

realise that the area of the figure obtained gives the value of the distance 

travelled   
 

 

Generalization: it may be shown that 

work, electric charge in a conductor 

etc can be calculated with the help of 

the area. 

 

 

  

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-8
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3. MARCO the DREAMer 
 

Field of application: Physics 

Required knowledge: solving second grade equations, square roots, basic 

calculations   

Project: Marco survives due to his knowledge of Physics (Mechanics and 

Thermodynamics) and Mathematics   

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-6  

Authors: Azgur Ariana, Grigoraș Flavia, Iorga Patricia, Pașca Bianca, Petcu 

Miruna, Colegiul National “C.D. Loga” Timisoara 

Coordinator: prof.  Stoia Simona, Samfirescu Isabela, România 

The problem: I’m stuck on a rock…how do I come down? I found myself at a 

big distance from the ground, so I had to use the rope I had in my backpack. 

To make sure that it was going to hold me, I used the ‘equilibrium of forces’.  

I decided to tie my rope, which was 50m long, around a stone and throw it 

down, to figure out the distance to the plateau. I realized that my rope was 3m 

too long, so using 

Maths I calculated the 

distance to the ground: 

47m. To find out the 

gravitational 

acceleration, I threw a 

small rock and started 

the timer I had in my 

backpack. It took 3,19s 

for the rock to reach the 

ground, so all I had to 

do was use the formulas.  

Resources: The  document 

Generalization: It may be considered a technique of survival ... but not in 

extreme conditions (i.e. do try this, only at home :) )  

  

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-6
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4. Angry Birds Projectile Motion 
 

Field of application: Physics 

Required knowledge: Calculations with real numbers, solving second grade 

equations 

Project: Angry Birds is a prime example of projectile motion in everyday 

situations. Millions of people have played this game and without even 

knowing it, calculated projectile motion. 

Moodle:  

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-4 

Authors: Georgios Kottas, Andreas Bodiotis 1o Geniko Lykeio Aigiou, 

Grece. 

Coordinator: Nikolaos Diamantopoulos, Ilias Spanos,  

The problem: Use http://screencast-o-matic.com/ site to capture a video of a 

yellow angry birds 1st level shot. Make sure before shooting to minimize the 

angry birds screen so that the background doesn’t move. Measure the 

horizontal velocity by hand. Measure the vertical velocity by hand. 

Follow a similar procedure as above for the calculation of vertical velocity, 

according to Figure 2 below. 

What do you observe about 

the time it takes for the angry 

bird to travel in the y 

direction?  

The sling’s angle changes, 

having an effect on the bird’s 

movement, which can be 

studied . 
Resources: 

http://physlets.org/tracker/  

Generalization: The 

movement of bodies under 

the influence of gravity 

when their initial velocity is at an angle from the horizontal direction can be 

studied.  

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-4
http://physlets.org/tracker/
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5.Movement of artificial satellites around Earth 
 

Field of application: Physics 

Required knowledge: notions of Euclidian geometry and elementary Maths  

Project: Explaining the physical variables upon which depends launching 

and stabilising an artificial satellite orbiting around Earth . => Kepler’s Laws 

Moodle:  

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-3 

Authors: Portugal Team, Agrupamento de Escolas Soares Basto, Portugal 

Coordinator: Prof. Paula Cristina Sousa Pereira Ornelas 

The problem: Calculate the periods of cyclical movements of the satellites of 

the previous question. Check your calculations. 

Help: Introduce a digital 

stopwatch in the display 

window to be able to calculate 

with reasonable accuracy the 

traveled time. With the pause 

button in the control window, 

you can temporarily stop the 

simulation in order to measure 

the time. In a chart window you 

can display graphs of each 

coordinate of any satellite, over 

time. From these graphs, you 

can easily calculate the periods of their movements. 

Resources:  

http://srv-1lyk-

aigiou.ach.sch.gr/moodle/pluginfile.php/82/mod_resource/content/1/solution.

modellus  

Generalization: This type of movement can be studied in the planets in our 

Solar System.  

 

 

 

http://srv-1lyk-aigiou.ach.sch.gr/moodle/course/view.php?id=3#section-3
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